

pin2pwn: How to Root an Embedded Linux Box with a Sewing Needle

Brad Dixon - Carve Systems

DEF CON 24

"USEFUL NOVELTY"

- It works
- Easy
- Teachable
- Dramatic

- Risky
- Crude
- Perhaps redundant

Demo

Prior Art

- Significant body of work around fault injection and glitching at the IC level for secure processors
- Recent system-level applications:
 - 2004: <u>WRT54 "Bricked Router" recovery,</u> Administrator note by mbm
 - "How to Hack the Hudl We give Rockchip a good seeing to",
 Pen Test Partners blog post
 - "20 Devices in 45 Minutes", CJ Heres et. al., DEF CON 22 (related)
 - "WINKHUB Side Channel Attack", Kevin2600, 2016
 - "Getting Root on a Philips Hue Bridge", Colin O'Flynn, 2016

For today...

- When this attack can be effective
- Why this attack works
- How to defend against this attack

RISKS TO HARDWARE

DEF CON 101

U. Ways to Brick your Hardware

Joe FitzPatrick & Joe Grand

- I have not **yet** destroyed hardware but this is abuse of semiconductor devices.
- Use on equipment you can afford to destroy.
- Depending on the hardware you may have better and safer options. Use those first.

Generic Networked Doohickey Product Design

Order of Attack

- 1. Serial
- 2. JTAG
- 3. ...
- 4. Flash to CPU interface

Why does this work?

- Disrupt boot chain with a transient fault
- Activate an unexpected failure path

Scenario #1: Exploitable U-Boot Configuration

- 1. No JTAG.
- 2. Homegrown "secure" boot
- 3. Try to load and boot kernel #1
- 4. Try to load and boot kernel #2
- 5. If that fails then... return to U-Boot prompt!

Scenario #2: Exploitable Init Configuration

- /bin/init reads /etc/inittab
- /bin/init runs /etc/rc

- /etc/rc starts application in the foreground
- Application grabs console and presents a login prompt with credentials we don't know
- BUT... if the application fails to load then /bin/init runs /bin/sh

How To Using LTE Router #4

How To

Prepare

- Survey HW
- Identify ports to monitor boot
- Datasheets
- Inspect failure modes, if possible
- Get boot timing

Poke

- Select pins to poke
- Get some timing visibility
- Poke!
- May take a few attempts
- Power-off between tests

Pwn?

- Monitor for unusual behavior
 - Serial traffic
- Fallback boot configurations
- Re-activated JTAG
- Boot from TFTP
- Fail to USB DFU
- New network ports
- Sometimes you get lucky!

pin2pwn rampage results

Note: Table indicates pin2pwn vulnerabilities only

	Device	"secure" boot	Flash Type	uboot shell	root shell	Defense
1	LTE Router #3	No	Serial			
2	LTE Router #4	No	Parallel			
3	<redacted></redacted>	Yes	Parallel			
4	<redacted></redacted>	No	Serial			
5	LTE Router #5	No	Parallel			BGA
6	LTE Router #6	Yes	Parallel			Hash check
7	Home Automation Hub	No	Parallel			BGA, Fast

Defense: FAIL CLOSED

- Test your failure paths including transient hardware failure.
- Modify boot loaders to reboot at the end of the automated boot sequence.
- Enable watchdog time in bootloader, service in userspace
- Be cautious shipping "fail to debug mode" features in production configurations.

```
[Env] Ethernet address not available, using emergency defai
[Bootcheck] RTC[2] = 0 \times 000000000
[Bootcheck] Cold boot detected
[Bootcheck] Booting from partition=nand0,4, rootfs=nand0,6
[Bootcheck] Partition = nand0,4 (4)
[Bootcheck] RTC[2] = 0 \times 000000000
[Bootcheck] RTC[2] = 0xala10400 (written)
[Watchdog] Dogtime = <default> = (60000)
[Boot] bootcmd = run bootcmd nand
[Boot] bootargs = console=ttyAM0,115200n8
[Detect] Mac = 00:0c:e3:72:c5:a9 / Ip = 192.168.1.1
[Detect] Starting factory reflash detect loop....
[Detect] Using FEC0 device
[Detect] Special packet not detected, timed out.
[Detect] Proceeding with regular boot.
[CheckSig] device 0 offset 0x15c0000, size 0xa00000
[CheckSig] Loading filesystem header (612 bytes)
NAND read from offset 15c00004104911c failed 0
[CheckSig] Bad superblock (e0e0e0e0)
resetting ...
PowerPrep start initialize power...
Battery Voltage = 3.40V
boot from battery. 5v input not detected
LLLLLLCJun 27 201414:30:13
FRAC 0x92925552
memory type is DDR2
                  Wait for ddr ready 1power 0x00820616
Frac 0x92925552
start change cpu freq
hbus 0x00000003
cpu 0x00010001
start test memory accress
```

Defense: Hide your pins and traces

- BGA surface mount devices hide their pins under the package
- Takes away the easy places to poke
- Make sure to route using inner layers

vulnerable traces under soldermask

Defense: Run silent, run fast

- Very terse serial output.
- Fast kernel boot (0.1332 seconds) makes it sort of hard to jam the pin in there at the right time.

Thank you

